IGSL Limited

DBFL Consulting Engineers

Ballyhale Flood Relief Scheme

Factual Ground Investigation Report

Project No. 23434

August 2021

Report

M7 Business Park Naas Co. Kildare Ireland

T: +353 (45) 846176 E: info @igsl.ie W: www.igsl.ie

FLOOD RELIEF SCHEME BALLYHALE

_

COUNTY KILKENNY

_____ D.B.F.L. CONS. ENGINEERS

CONTENTS

Ι	INTRODUCTION
II	FIELDWORK
III	TESTING

APPENDICES

Ι	TRIAL PIT LOGS
II	LABORATORY DATA
III	SITE PLAN

FOREWORD

The following conditions and notes on the geotechnical site investigation procedures should be read in conjunction with this report.

Standards

The ground investigation works for this project have been carried out by IGSL in accordance with Eurocode 7 - Part 2: Ground Investigation & Testing (EN 1997-2:2007). This has been used together with complementary documents such as BS 5930 (1999), BS 1377 (Parts 1 to 9) and Engineers Ireland Specification & Related Documents for Ground Investigation in Ireland (2006). A new National Annex for use in the Republic of Ireland is currently in circulation for comment and will be adopted in the near future. In the mean time, the following Irish (IS) and European Standards or Norms are referenced:

- IS EN 1997-2 Eurocode 7: 2007 Geotechnical Design Part 2: Ground Investigation & Testing
- IS EN ISO 22475-1:2006 Geotechnical Investigation and Sampling Sampling Methods & Groundwater Measurements
- IS EN ISO 14688-1:2002 Geotechnical Investigation and Testing Identification and Classification of Soil, Part 1: Identification and Description
- IS EN ISO 14688-2:2004 Geotechnical Investigation and Testing Identification and Classification of Soil, Part 2: Classification Principles
- IS EN ISO 14689-1:2004 Geotechnical Investigation and Testing Identification & Classification of Rock, Part 1: Identification & Description

Reporting

Recommendations made and opinions expressed in this report are based on the strata observed in the exploratory holes, together with the results of in-situ and laboratory tests. No responsibility can be held by IGSL Ltd for ground conditions between exploratory hole locations.

The engineering logs provide ground profiles and configuration of strata relevant to the investigation depths achieved and caution should be taken when extrapolating between exploratory points. No liability is accepted for ground conditions extraneous to the investigation points.

This report has been prepared for DBFL Consulting Engineers and the information should not be used without prior written permission. The recommendations developed in this report specifically relate to the proposed development. IGSL Ltd accepts no responsibility or liability for this document being used other than for the purposes for which it was intended.

In-Situ Testing

Standard penetration tests were conducted strictly in accordance with Section 4.6 of IS EN 1997-2:2007. The SPT equipment (hammer energy test) has been calibrated in accordance with EN ISO 22476-3:2005 and the Energy Ratio (E_r). A calibration certificate is available upon request. The E_r is defined as the ratio of the actual energy E_{meas} (measured energy during calibration) delivered to the drive weight assembly into the drive rod below the anvil, to the theoretical energy (E_{theor}) as calculated from the drive weight assembly. The measured number of blows (N) reported on the engineering logs are uncorrected. In sands, the energy losses due to rod length and the effect of the overburden pressure should be taken into account (see IS EN ISO 22476-3:2005).

Groundwater

The depth of entry of any influx of groundwater is recorded during the course of boring operations. However, the normal rate of boring does not usually permit the recording of an equilibrium level for any one water strike. Where possible drilling is suspended for a period of twenty minutes to monitor the subsequent rise in water level. Groundwater conditions observed in the borings or pits are those appertaining to the period of investigation. It should be noted however, that groundwater levels are subject to diurnal, seasonal and climatic variations and can also be affected by drainage conditions, tidal variations etc.

Engineering Logging

Soil and rock identification has been based on the examination of the samples recovered and conforms with IS EN ISO 14688-1:2002 and IS EN ISO 14689-1:2004. Rock weathering classification conforms to IS EN ISO 14689-1:2003 while discontinuities (bedding planes, joints, cleavages, faults etc) are classified in accordance with 4.3.3 of IS EN ISO 14689-1:2003. Rock mechanical indices (TCR, SCR, RQD) are defined in accordance with IS EN ISO 22475-1:2006.

Retention of Samples

Samples shall be retained for a period of 60 days following approval of the final factual report, as detailed in the Scope of Works.

REPORT ON A SITE INVESTIGATION FOR A FLOOD RELIEF SCHEME AT BALLYHALE COUNTY KILKENNY FOR KILKENNY COUNTY COUNCIL AND DBFL CONSULTING ENGINEERS

Report No. 23434

August 2021

I Introduction

A Flood Relief Scheme is to be undertaken on a site located at Ballyhale in County Kilkenny.

An investigation of sub soil conditions in the area of the proposed development has been carried out by IGSL for consultants DBFL, on behalf of Kilkenny Co. Co.

The works have been completed in accordance with HSE and Government COVID-19 guidelines and recommendations, ensuring safety of site personnel and the general public.

Close liaison was maintained throughout with the client and consulting engineer and an appointed archaeologist was in attendance during the course of the investigation.

The scheduled site investigation included the following elements:

- Trial Pit Excavations (10 nr.)
- Geotechnical Laboratory Testing
- Environmental Laboratory Testing

This factual report includes all data from field and laboratory operations and incorporates an environmental assessment of the site area.

II Fieldwork

The development is located in Ballyhale in County Kilkenny in the vicinity of the Ballyhale River.

The exploratory locations are noted on the drawing enclosed in Appendix III. This drawing was provided by DBFL. Locations were marked out by IGSL and accurately surveyed to National Grid. Ground levels were also established.

All trial pitting works were supervised by an experienced geotechnical engineer who carefully recorded stratification, recovered samples as required and prepared detailed records with supporting photographs.

Each location was scanned electronically (CAT) to ensure that existing services were not damaged.

Trial Pits

Pits were excavated using a 5 tonne tracked excavator under engineering supervision. Detailed trial pit logs are enclosed in Appendix I. Trial Pits are referenced TP01 to TP10.

A high degree of consistency was noted in the general stratification. Topsoil (with a little FILL in places) generally overlies firm to stiff very gravelly CLAY.

In some locations a thin SAND/GRAVEL layer is noted between the upper topsoil and the gravelly CLAY.

Trial pits were terminated at relatively shallow depths (between 1.00 and 2.00 metres) in eight of the ten locations. At TP03 and TP08 excavations continued to refusal at approximately 2.80 metres.

Ground water was noted in three of the trial pits with a copious flow recorded in TP06 at 1.40 metres. Seepage only was noted in TP02 and TP09.

Samples were recovered at intervals in all trial pits and were returned to IGSL for examination and laboratory analysis.

All excavations were carefully backfilled with excavated material.

The findings are summarised in the following table.

Ref N	١o.	Topsoil	Fill	Gravel	Gravelly Clay	¥	Rock
01	0	- 0.20	0.20 -0.40		0.40 - 1.50	1.50	
02	0	- 0.20		0.20 - 1.10	1.10 - 1.30	1.30	
03	0	- 0.20			0.20 - 1.00	1.00	
04	0	- 0.25			0.25 - 2.80	2.80	
05	0	- 0.25			0.25 - 0.80	0.80 -	- 1.00
06	0	- 0.20		0.20 - 1.00	1.00 - 1.40	1.40	
07	0	- 0.20			0.20 - 1.00	1.00	
08	0	- 0.20		0.20 - 0.70	0.70 - 1.80	1.80	
09	0	- 0.20			0.20 - 2.70	2.70	
10	0	- 0.10	0.10 - 0.30	0.30 -	- 0.70 0.70 - 1.90		1.90

III. Laboratory Testing

A programme of laboratory testing was scheduled following completion of site operations. Geotechnical testing was carried out by IGSL in it's INAB-Accredited laboratory. Environmental and chemical testing was carried out in the UK by EUROFINS Ltd. The test programme included the following elements:

- Liquid and Plastic Limits / Moisture Content
- PSD Grading by wet sieve and hydrometer.
- Sulphate, Chloride and pH
- RILTA Suite Environmental

All test results are presented in Appendix II and are discussed briefly in the following paragraphs.

Classification

Tests on the cohesive gravelly SILT/ CLAY confirm that the material ranges from silt to clay dominant, falling partly into Class CI/CL of the standard classification and partly into the non-plastic fraction. Results are indicative of sensitive soil of low plasticity. Moisture contents of 8 to 24% were recorded.

Grading

Four samples of the overburden soils were tested using wet sieve and hydrometer analysis. The grading curves reflect some variation from gravelly silty CLAY to more granular clay-bound sandy GRAVEL. A sample from the gravel stratum in TP02 is clean and well graded in the sand to coarse gravel range.

Sulphate, Chloride and pH

Three samples have been analysed to determine sulphate, chloride and pH values.

A Sulphate concentration (SO4 2:1 extract) of < 0.010 g/l was established with pH values of 7.5 to 8.8. A Water Soluble Chloride content of < 0.010 g/l was also established.

A sulphate design class of DS-1 (ACEC Classification for Concrete) is indicated for sulphate concentrations lower than 0.5 g/l. No special precautions are therefore deemed necessary for protection of below ground concrete.

Environmental RILTA Suite

Three samples of soil from the trial pits were submitted for detailed environmental analysis to RILTA Suite (WAC) parameters. Specialist environmental consultants have examined and assessed the test data.

They confirm that all samples are classified as INERT in accordance with the Landfill Waste Acceptance Criteria (WAC). Material excavated during construction may be disposed of within the site or off site to a suitably licensed landfill facility.

No traces of Asbestos were determined during routine testing.

<u>IGSL/JC</u> AUGUST 2021

Appendix I

Trial Pit Records

REPORT NUMBER

	RACI	Ballyhale flood relief scheme						- SHEET	n NU.	Shee	t 1 of 1	
OGO	GED BY	S.Hannon	CO-ORDINAT	ES	654,24 635,34	46.78 E 14.67 N		DATE ST DATE CO	TARTED	06/07 ED 06/07	7/2021 7/2021	
LIEN	NT NEER	Kikenny county council DFBL	GROUND LEV	/EL (m)	55.70			EXCAVA METHOD	TION D	5T tra excav	T tracked xcavator	
									Samples		a)	meter
		Geotechnical Description	1	Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Type	Depth	Vane Test (KF	Hand Penetro
0.0	TOPSOI	IL		<u>x11</u> <u>x11</u>								
	MADE G	GROUND firm brown sandy grave	elly CLAY with		0.20	55.50						
	rounded	and fine to coarse.	angular to sub		0.40	55.30			_			
	Firm to s cobble c and bou	stiff grey sandy gravelly CLAY wit content and low boulder content. Iders are angular to sub angular	h medium Gravels cobbles and fine to		0.70	55.00		AA155654	В	0.50-0.50		
1.0	Firm to s sandy si rounded weather End of T	stiff multicoloured green purple a lty gravelly CLAY. Gravels are ar l and fine to coarse. Pit terminate ed yellow and red sandstone bec	/ nd yellow slightly ggular to sub ed - refusal on Irock.		1.50	54.20		AA155655	В	1.30-1.30		
3.0												
4.0												
iroui Dry	ndwater C	Conditions										
tabi tabl	l ity e											
ene AT s	ral Rema i scanned l	rks location for services										

REPORT NUMBER

LOGGED BY S.Hannon CO-ORDINATES 654.251.93 E 635,429.25 N DATE S DATE C CLIENT Kikenny county council GROUND LEVEL (m) 53.95 EXCAV, METHO ENGINEER DFBL Geotechnical Description Image: Co-ORDINATES 654.251.93 E 635,429.25 N DATE S DATE C 0.0 TOPSOIL Image: Co-ORDINATES Geotechnical Description Image: Co-ORDINATES 0.20 ORDINE 53.75 Image: Co-ORDINATES 0.20 ORDINE 53.75 Image: Co-ORDINATES 0.20 ORDINE 53.75 Image: Co-ORDINATES Image: Co-ORDINATES <t< th=""><th></th><th>0110</th><th>et 1 of 1</th><th></th></t<>		0110	et 1 of 1	
CLIENT ENGINEER Kikenny county council DFBL GROUND LEVEL (m) 53.95 EXCAV, METHO 0.0 Geotechnical Description	TARTED OMPLET	06/0 FED 06/0	7/2021 7/2021	
Geotechnical Description Image: Construct of the second	ATION D	5T ti exca	racked avator	1
Geotechnical Description End of Trial Pit at 1.30m End of Trial Pit at 1.30m	Samples	s	KPa)	rometer
0.0 TOPSOIL 0.20 53.75 Firm grey sandy gravelly CLAY. Gravels are angular to sub angular and fine to coarse. 0.40 53.55 Medium dense purpleish grey mottled brown very gravelly SAND with medium cobble content and low boulder content. Gravels cobbles and boulders are angular to sub rounded and fine to coarse. 0.40 53.55 1.0 Firm greenish grey mottled yellow slightly sandy very gravelly CLAY. Gravels are sub angular to sub rounded and fine to coarse. Pit terminated - refusal on weathered yellow and red sandstone bedrock. 1.10 52.85 2.0 End of Trial Pit at 1.30m 1.30 52.65	Type	Depth	Vane Test (I	Hand Penet (KPa)
Firm grey sandy gravelly CLAY. Gravels are angular to sub angular and fine to coarse. Medium dense purpleish grey mottled brown very gravelly SAND with medium cobble content and low boulder content. Gravels cobbles and boulders are angular to sub rounded and fine to coarse. 1.0 Firm greenish grey mottled yellow slightly sandy very gravelly CLAY. Gravels are sub angular to sub rounded and fine to coarse. Pit terminated - refusal on weathered yellow and red sandstone bedrock. End of Trial Pit at 1.30m 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0				
1.0 0.40 53.35 1.0 Firm greenish grey mottled yellow slightly sandy very gravelly CLAY. Gravels are sub angular to sub rounded and fine to coarse. 1.10 1.0 Firm greenish grey mottled yellow slightly sandy very gravelly CLAY. Gravels are sub angular to sub rounded and red sandstone bedrock. 1.30 2.0 2.0				
1.0 Firm greenish grey mottled yellow slightly sandy very gravelly CLAY. Gravels are sub angular to sub rounded and fine to coarse. Pit terminated - refusal on weathered yellow and red sandstone bedrock. 1.10 52.85 1.30 52.65 2.0 2.0 1.30 52.65 1.30 52.65 1.30 52.65	В	0.50-0.50)	
Firm greenish grey mottled yellow slightly sandy very gravelly CLAY. Gravels are sub angular to sub rounded and fine to coarse. Pit terminated - refusal on weathered yellow and red sandstone bedrock. 1.30 52.65 End of Trial Pit at 1.30m 2.0				
2.0	В	1.10-1.30)	
2.0 End of Trial Pit at 1.30m				
2.0				
2.0				
3.0				
4.0				
Groundwater Conditions				
Seepage 1.3m				
Stability Stable				
General Remarks				

L.GDT	
IGS	ł
GPJ	
34A	
234	
LOG	
Ц	
GSL	
_	

REPORT NUMBER

LOCOCED BY S. Hannon CONCURRES Date State Date State Deel 007/2021 CLIENT ENGNEER Kikenny countly coundi GROUND LEVEL (m) 59.26 Date State Date State Deel 007/2021 Date State Deel 007/2021 CLIENT ENGNEER Kikenny countly coundi Geotechnical Description TopSolL TopSolL Samples TopSolL Samples TopSolL To					GEAA			SHEET		Shee	• et 1 of 1	
CLUENT ENOMEER Cleant DFBL CROUND LEVEL (m) 59.25 EXCAVATION METHOD St tracked occavator 0 Fill Geodechnical Description Fill	LOGGED I	BY S.Hannon			635,4	oo.07 E 12.34 N		DATE ST	TARTED	06/07 ED 06/07	7/2021 7/2021	
Geotechnical Description Samples 00 TOPSOIL Firm light brown sandy silty gravelly CLAY. Gravels are angular to sub rounded and fine to coarse. 0.25 10 Firm dight brown sandy silty gravelly CLAY. With median cobles and boulders are angular to sub rounded and fine to coarse. 0.40 10 Median dense brownish gravelly CLAY with median cobles context and median boulders are angular to sub rounded and fine to coarse. 0.40 10 Median dense brownish gravelly CLAY with median cobles context and median boulders are angular to sub rounded and fine to coarse. 0.40 10 Median dense brownish gravelly CLAY with median cobles context and median boulders are angular to sub rounded and fine to coarse. 0.40 20 End of Trial Pit at 2.80m 56.46 A155660 30 First Set Set Set Set Set Set Set Set Set Se	CLIENT ENGINEER	Kikenny county council DFBL		ver (m)	59.26			EXCAVA METHO	ATION D	5T tra exca	acked vator	
Image: Section of the section of t									Samples	;	a)	neter
00 TOPSOIL 0.25 59.01 0.25 59.01 angular to sub nonded and file to coarse. 0.40 58.86 0.40 58.86 Into still light brown sandy silly gravelly CLAY with medium boulders are angular to sub rounded and file to coarse. 0.40 58.86 0.40 58.86 Indiand file to coarse. 0.40 58.86 0.40 58.86 0.60-0.60 Indiand file to coarse. 0.40 58.86 0.40 58.86 0.60-0.60 Madum dence brownish gray clayey very gravelly SAND montown with the coarse. 0.40 57.96 0.4155665 B 0.60-0.60 Madum dence brownish gray clayey very gravelly SAND montown with the coarse. 0.40 57.96 0.4155666 B 1.50-1.50 Indiand file to coarse. 1.30 57.96 0.4155666 B 2.50-2.50 Indiand file to coarse. Indiant relutation moderately were graveling to sub counded and file to coarse. 0.60-0.60 0.60-0.60 Indiant file to coarse. Indiant relutation moderately were graveling to sub counded and file to coarse. 0.60-0.60 0.60-0.60 Indiant file to coarse. Indiant relutation moderately were graveling to sub counded and file to coarse. 0.60-0.6		Geotechnical Description		Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Type	Depth	Vane Test (KP	Hand Penetror (KPa)
Medium dense brownish grey clayey very gravelly SAND with medium cobble content and medium boulder content. Gravels cobles and boulders are angular to sub rounded and fine to coarse. Pit terminated - refusal on moderately weathered yellow and red sandstone bedrock. 1.30 57.96 AA155660 B 1.50-1.50 20 End of Trial Pit at 2.80m 2.80 56.46 S6.46 B 2.50-2.50 30 End of Trial Pit at 2.80m 2.80 56.46 Image: Second Sec	0.0 TOF Firm ang Firm mec Grav and	PSOIL Ight brown sandy silty gravelly CLAY ular to sub rounded and fine to coarse to stiff light brown sandy silty gravelly lium cobble content and medium bould vels cobbles and boulders are angular fine to coarse.	. Gravels are / CLAY with der content. to sub rounded		0.25 0.40	59.01 58.86		AA155659	В	0.60-0.60		
AA155661 B 2.50-2.50 a.0 End of Trial Pit at 2.80m 4.0 A.0 Stability Stable Stability Stable Stable Stable	Mec with Grav and wea	lium dense brownish grey clayey very medium cobble content and medium vels cobbles and boulders are angular fine to coarse. Pit terminated - refusal thered yellow and red sandstone bedr	gravelly SAND boulder content. to sub rounded on moderately ock.		1.30	57.96		AA155660	В	1.50-1.50		
30 4.0 4.0 Stability Stable Seneral Remarks Se	Fnd	of Trial Pit at 2 80m			2.80	56.46		AA155661	В	2.50-2.50		
Stability Stable General Remarks CAT scanned location for services	4.0											
Stability Stable General Remarks CAT scanned location for services	Groundwa Dry	ter Conditions										
General Remarks	Stability Stable											
	General R CAT scanr	emarks ned location for services										

REPORT NUMBER

CUNTRACT	Dallynale 1000 relief scheme						SHEET		Shee	et 1 of 1	
LOGGED BY	S.Hannon	CO-ORDINAT	ES	654,0 635,3	79.52 E 84.74 N		DATE ST DATE CO	TARTED	06/07 ED 06/07	7/2021 7/2021	
CLIENT ENGINEER	Kikenny county council DFBL		/EL (m)	60.33	1		EXCAVA METHO	ATION D	5T tra exca	acked vator	
	Geotechnical Description	n				e		Samples		(KPa)	etrometer
	Geolecimical Descriptio		Legend	Depth (m)	Elevation	Water Stril	Sample Ref	Type	Depth	Vane Test	Hand Pen
0.0 TOPSO	DIL		<u>11 11 11</u>	0.25	60.08						
Firm br	own sandy gravelly CLAY with me t. Gravels are angular to sub roun	edium cobble ded and fine to		0.20	59.83						
Firm to	stiff yellowish brown sandy very g	ravelly CLAY		0.00	00.00		AA155662	В	0.50-0.50		
Gravel	s cobbles and boulders are angulate to coarse.	ar to sub rounded	E C	0.80	59.53						
1.0 Weath boulde clay. Pi	ered rockhead recovered as angu rs of green and red sandstones an it terminated at 1.1 m.	lar cobbles and nd dark brown		1.10	59.23						
End of	Trial Pit at 1.10m										
2.0											
3.0											
4.0											
Groundwater Dry	Conditions										
Stability Stable											
General Rem	arks										
UNT SUATHIEU	LIGGATION ION SELVICES										

REPORT NUMBER

								SHEET		Sheet	t 1 of 1	
LOG	GED BY	S.Hannon	CO-ORDINAT	ES	654,23 635,28	38.45 E 31.70 N		DATE ST DATE C	TARTED	07/07 ED 07/07	/2021 /2021	
CLIE ENG	NT INEER	Kikenny county council DFBL	GROUND LEV	OUND LEVEL (m)				EXCAVATION METHOD		5T tra excav	icked ⁄ator	
								Samples		, a)		neter
		Geotechnical Descript	ion	Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Type	Depth	Vane Test (KP	Hand Penetror (KPa)
0.0	TOPSO	IL dense light grev clavev verv sa	andv GRAVEL with	$\frac{\sqrt{1}}{\sqrt{2}} \frac{\sqrt{1}}{\sqrt{2}}$	0.20	56.16						
	high cob cobbles	and boulders are angular to su	ontent. Gravels Ib rounded and fine		0.50	55.86						
1.0	Medium high cob cobbles to coars Firm to s	e. dense greyish brown very grav bble content and low boulder co and boulders are angular to su e. stiff purplish grey slightly sandy	/elly SAND with ontent. Gravels lb rounded and fine		1.00	55.36		AA155663	В	0.60-0.60		
	CLAY w content. rounded to contin End of T	ith medium cobble content and Gravels cobbles and boulders and fine to coarse. Pit termina nue excavating or sample. Frial Pit at 1.40m	low boulder are angular to sub ted at 1.4 m to wet		1.40	54.96						
2.0												
3.0												
4.0												
Groι Fast	Indwater (flow at 1.4	Conditions 4m										
Stab Stab	ility le											
Gen CAT	eral Rema scanned l	rks location for services										

REPORT NUMBER

TP LOG

IGSL 7

REPORT NUMBER

CON	IRACT	Ballyhale flood relief scheme							II NU.	Shee	o et 1 of 1	
LOG	GED BY	S.Hannon	CO-ORDINAT	ES	654,29 635,22	98.98 E 27.83 N		DATE ST DATE CO	TARTED	07/07 ED 07/07	7/2021 7/2021	
CLIE ENGI	NT NEER	Kikenny county council DFBL	GROUND LEV	/EL (m)	56.70			EXCAVA METHO	ATION D	5T tra exca	acked vator	
		Geotechnical Description		pu	F	ltion	r Strike	e	Samples		Test (KPa)	Penetrometer
				Leger	Depth (m)	Eleva	Wate	Samp Ref	Type	Depth	Vane	Hand (KPa)
0.0 1.0	TOPSO Firm gre Medium cobbles to coars Firm to s slightly o low boul angular - refusal	IL eyish brown sandy CLAY. dense purpleish grey clayey grav cobble content and low boulder of and boulders are angular to sub r e. stiff pale green mottled yellow slig gravelly silty CLAY with low cobble der content. Gravels cobbles and to sub rounded and fine to coarse on weathered yellow and red sar	elly SAND with ontent. Gravels ounded and fine htly sandy content and boulders are Pit terminated dstone bedrock.	X18'1%1'180'0 [] \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0.20 0.40 0.70	56.50 56.30 56.00		AA155665 AA155666	5 B	0.50-0.50 1.00-1.20		
2.0	End of T	rial Pit at 1.80m			1.80	54.90						
3.0												
4.0												
Grou Dry Stabi	ndwater (Conditions										
Stabl	e											
Gene CAT	eral Rema scanned I	rks location for services										

REPORT NUMBER

CONTR	ACT	Ballyhale flood relief scheme						TRIAL PI	T NO.	TP0 Shee	9 t 1 of 1	
LOGGE	DBY	S.Hannon	CO-ORDINAT	ES	654,1 635,8	55.37 E 40.35 N		DATE ST DATE CO	ARTED	07/07 ED 07/07	7/2021 7/2021	
	ER	Kikenny county council DFBL	GROUND LEV	/EL (m)	50.41			EXCAVA METHOD	TION	5T tra excav	acked /ator	
								5	Samples	;	(1	leter
		Geotechnical Description		Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Type	Depth	Vane Test (KPa	Hand Penetrom
0.0 T	OPSOI	L		<u>x17</u> <u>x17</u>								
F	Firm gre	yish brown slightly sandy gravelly	CLAY. Gravels		0.20	50.21 50.06						
S CC al	Stiff brow content a and boul coarse.	wn sandy very gravelly CLAY with and medium boulder content. Gra Iders are sub angular to sub round	medium cobble vels cobbles ded and fine to		0.70	49.71		AA155667	В	0.50-0.70		
1.0 m to	Firm bro nedium o sub rc	wn mottled dark brown sandy gra cobble content. Gravels and cobb ounded and fine to coarse.	velly CLAY with oles are angular	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				AA155668	В	1.20-1.20		
2.0 Fi an bo	Firm to s nedium Gravels and fine oulders	tiff yellowish brown sandy gravell cobble content and medium bouk cobbles and boulders are angular to coarse. Pit terminated refusal o	y CLAY with der content. · to sub rounded on large		1.80	48.61		AA155669	В	2.20-2.40		
E	End of T	rial Pit at 2.70m			2.70	47.71						
3.0												
4.0												
Ground Seepage	lwater C je at 2m	Conditions										
Stability Stable	y											
General CAT sca	I Remai	'ks ocation for services										
2,11 300												

REPORT NUMBER

CON	RACT	Ballyhale flood relief scheme						- SHEET	II NU.	「P1 Shee	U et 1 of 1	
LOGO	GED BY	S.Hannon	CO-ORDINAT	ES	654,1 635,79	72.40 E 92.57 N		DATE ST DATE CO	TARTED	07/07 ED 07/07	7/2021 7/2021	
CLIEI	NT NEER	Kikenny county council DFBL	GROUND LE	VEL (m)	50.32			EXCAVA METHO	ATION D	5T tra exca	acked vator	
								Samples		;	a)	
		Geotechnical Descriptio	n	Legend	Depth (m)	Elevation	Water Strike	Sample Ref	Type	Depth	Vane Test (KP	Hand Penetron
0.0	TOPSO MADE (IL GROUND comprising stiff to verv	stiff light brown		0.10	50.22						
	sandy g	ravelly CLAY with high cobble co bles are angular to sub rounded	ntent. Gravels and fine to		0.30	50.02						
	∖coarse. ∖ Firm bro	Very difficult to excavate. wwn sandy gravelly CLAY. Gravel	s are angular to	0.0	0.50	49.82		AA155670	В	0.50-0.70		
1.0	sub rour Medium medium to sub ro	nded and fine to coarse. dense purpleish grey gravelly S, cobble content. Gravels and cot punded and fine to coarse.	AND with obles are angular		0.70	49.62						
	Firm to s with me Gravels and fine yellow a	stiff yellowish brown slightly sand dium cobble content and medium cobbles and boulders are angula to coarse. Pit terminated - refus nd red sandstone bedrock or pos	y gravelly CLAY a boulder content. ar to sub rounded al on weathered ssible very large					AA155671	В	1.30-1.50		
	boulders	S.			1 00	18 12						
2.0												
3.0												
4.0												
Grou Dry	ndwater (Conditions						<u> </u>				
Stabi Stabl	lity e											
Gene	ral Rema	rks										
UAT :	scanned	Incation for services										

Ballyhale FRS – 23434

Trial pit photos.

<u>TP01</u>

<u>TP02</u>

<u>TP03</u>

Appendix II Laboratory Results

IGSL Ltd Materials Lat	ooratory						Т	est Rep	oort					ISO 17025
Unit J5, M7 E Newhall, Naa	Business Park as	ζ			Deter	Determination of Moisture Content, Liquid & Plastic Limits								IVNAB ACCREDITED TESTING
045 846176					Tested in	accordance	e with BS1	377:Part 2	:1990, clau	ises 3.2, 4.	3, 4.4 & 5.	3**		DETAILED IN SCOPE REG NO. 1337
	Report No.	R125586		Contract	No.	23434		Contract N	Name:	Ballyhale	FRS			
	Customer	DBFL												
	Samples Re	eceived:	13/08/21	Date Tes	sted:	13/08/21								
BH/TP*	Sample No.	Depth* (m)	Lab. Ref	Sample Type*	Moisture Content %	Liquid Limit %	Plastic Limit %	Plasticity Index	% <425µm	Preparation	Liquid Limit Clause	Classification (BS5930)	Description	
TP01	AA155655	1.3	A21/3803	В	20	36	17	19	84	WS	4.4		Brown sandy gravelly CLAY	
TP03	AA155658	0.7	A21/3805	В	8.7	32	NP	NP	21	WS	4.4		Brown sandy gravelly	SILT
TP06	AA155663	0.6	A21/3807	В	8.2	31	NP	NP	21	WS	4.4		Brown sandy gravelly	SILT
TP08	AA155666	1.0	A21/3809	В	21	33	16	17	95	WS	4.4	CL	Brown sandy gravelly	CLAY
TP09	AA155669	2.2	A21/3810	В	17	34	18	16	44	WS	4.4	CL	Brown slightly sandy, gravelly, 0	CLAY with some cobbles
TP10	AA155671	1.3	A21/3808	В	24	44	19	25	72	WS	4.4	CI	Brown sandy gravelly	CLAY
	Preparation:	WS - Wet sieved			Sample Type:	B - Bulk Distu	urbed	Remarks:	•	•			•	
		AR - As received				U - Undisturb	ed	Results relate	only to the spe	cimen tested,ir	as received co	ondition unless	otherwise noted.	
		NP - Non plastic						NOTE: **Thes	e clauses have	e been superce	ded by EN 178	92-1 and EN17	7892-12.	
	Liquid Limit	4.3 Cone Penetro	meter definitive	e method				Opinions and	interpretations	are outside the	scope of accre	editation. * deno	otes Customer supplied	information.
	Clause:	4.4 Cone Penetro	meter one poin		Persons autho	rized to appro	ve reports	This report shall not be reproduced except in fullwithout written approval fro					Date	Page
IG	SL Ltd M	laterials La	boratorv							IA @	~ j			4 - (4
						H Byrne (La	aboratory I	Manager)		TIP	rene		20/08/21	1 01 1

😵 eurofins

Chemtest

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL Tel: 01638 606070 Email: info@chemtest.com

Report No.:	21-28502-1		
Initial Date of Issue:	25-Aug-2021		
Client	IGSL		
Client Address:	M7 Business Park Naas County Kildare Ireland		
Contact(s):	Darren Keogh		
Project	23434 Ballyhale FRS (DBFL)		
Quotation No.:		Date Received:	17-Aug-2021
Order No.:		Date Instructed:	17-Aug-2021
No. of Samples:	6		
Turnaround (Wkdays):	7	Results Due:	25-Aug-2021
Date Approved:	25-Aug-2021		
Approved By:			
Ulipenter			
Details:	Glynn Harvey, Technical Manager		

Client: IGSL		Chemtest Job No.				21-28502	21-28502	21-28502
Quotation No.:		(Chemte	st Sam	ple ID.:	1262174	1262176	1262178
Order No.:			Clie	nt Samp	le Ref.:	AA155654	AA155659	AA155667
		Sample Location:				TP01	TP04	TP09
		Sample Type:				SOIL	SOIL	SOIL
			Top Depth (m):		0.50	0.60	0.50	
Determinand	Accred.	SOP	Туре	Units	LOD			
рН	U	1010	10:1		N/A	8.2	8.1	8.2
Ammonium	U	1220	10:1	mg/l	0.050	< 0.050	0.058	< 0.050
Ammonium	Ν	1220	10:1	mg/kg	0.10	0.46	0.62	0.35
Boron (Dissolved)	U	1455	10:1	mg/kg	0.01	0.14	< 0.01	< 0.01
Benzo[j]fluoranthene	Ν	1800	10:1	µg/l	0.010	< 0.010	< 0.010	< 0.010

Client: IGSL		Ch	emtest .	Job No.:	21-28502	21-28502	21-28502	21-28502	21-28502	21-28502
Quotation No.:		Chem	test San	nple ID.:	1262174	1262175	1262176	1262177	1262178	1262179
Order No.:		Cli	ent Sam	ple Ref.:	AA155654	AA155658	AA155659	AA155663	AA155667	AA155668
		5	Sample I	ocation:	TP01	TP03	TP04	TP06	TP09	TP09
			Samp	ole Type:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
			Top De	epth (m):	0.50	0.70	0.60	0.60	0.50	1.20
			Asbes	stos Lab:	COVENTRY		COVENTRY		COVENTRY	
Determinand	Accred.	SOP	Units	LOD						
АСМ Туре	U	2192		N/A	-		-		-	
Asbestos Identification	U	2192		N/A	No Asbestos Detected		No Asbestos Detected		No Asbestos Detected	
Moisture	N	2030	%	0.020	12	8.3	10	7.3	6.5	11
pH (2.5:1)	N	2010		4.0		[A] 8.0		[A] 7.5		[A] 8.8
Boron (Hot Water Soluble)	U	2120	mg/kg	0.40	[A] < 0.40		[A] < 0.40		[A] < 0.40	
Magnesium (Water Soluble)	N	2120	g/l	0.010		[A] < 0.010		[A] < 0.010		[A] < 0.010
Sulphate (2:1 Water Soluble) as SO4	U	2120	g/l	0.010		[A] < 0.010		[A] < 0.010		[A] < 0.010
Total Sulphur	U	2175	%	0.010		[A] < 0.010		[A] 0.018		[A] 0.011
Sulphur (Elemental)	U	2180	mg/kg	1.0	[A] 2.7		[A] 1.8		[A] 1.7	
Chloride (Water Soluble)	U	2220	g/l	0.010		[A] < 0.010		[A] < 0.010		[A] < 0.010
Nitrate (Water Soluble)	N	2220	g/l	0.010		< 0.010		< 0.010		< 0.010
Cyanide (Total)	U	2300	mg/kg	0.50	[A] < 0.50		[A] < 0.50		[A] < 0.50	
Sulphide (Easily Liberatable)	N	2325	mg/kg	0.50	[A] 0.91		[A] < 0.50		[A] < 0.50	
Ammonium (Water Soluble)	U	2220	g/l	0.01		< 0.01		< 0.01		< 0.01
Sulphate (Acid Soluble)	U	2430	%	0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] < 0.010	[A] 0.010	[A] < 0.010
Arsenic	U	2450	mg/kg	1.0	2.1		21		8.4	
Barium	U	2450	mg/kg	10	48		56		24	
Cadmium	U	2450	mg/kg	0.10	< 0.10		0.76		0.26	
Chromium	U	2450	mg/kg	1.0	8.1		16		11	
Molybdenum	U	2450	mg/kg	2.0	< 2.0		< 2.0		< 2.0	
Antimony	N	2450	mg/kg	2.0	< 2.0		< 2.0		< 2.0	
Copper	U	2450	mg/kg	0.50	8.9		34		14	
Mercury	U	2450	mg/kg	0.10	< 0.10		< 0.10		< 0.10	
Nickel	U	2450	mg/kg	0.50	8.5		40		27	
Lead	U	2450	mg/kg	0.50	11		19		7.8	
Selenium	U	2450	mg/kg	0.20	< 0.20		0.68		0.29	
Zinc	U	2450	mg/kg	0.50	26		49		31	
Chromium (Trivalent)	N	2490	mg/kg	1.0	8.1		16		11	
Chromium (Hexavalent)	N	2490	mg/kg	0.50	< 0.50		< 0.50		< 0.50	
Mineral Oil (TPH Calculation)	N	2670	mg/kg	10	< 10		< 10		< 10	
Aliphatic TPH >C5-C6	N	2680	mg/kg	1.0	[A] < 1.0		[A] < 1.0		[A] < 1.0	
Aliphatic TPH >C6-C8	N	2680	mg/kg	1.0	[A] < 1.0		[A] < 1.0		[A] < 1.0	
Aliphatic TPH >C8-C10	U	2680	mg/kg	1.0	[A] < 1.0		[A] < 1.0		[A] < 1.0	
Aliphatic TPH >C10-C12	U	2680	mg/kg	1.0	[A] < 1.0		[A] < 1.0		[A] < 1.0	
Aliphatic TPH >C12-C16	U	2680	mg/kg	1.0	[A] < 1.0		[A] < 1.0		[A] < 1.0	
Aliphatic TPH >C16-C21	U	2680	mg/kg	1.0	[A] < 1.0		[A] < 1.0		[A] < 1.0	
Aliphatic TPH >C21-C35	U	2680	mg/kg	1.0	[A] < 1.0		[A] < 1.0		[A] < 1.0	
Aliphatic TPH >C35-C44	N	2680	ma/ka	1.0	[A] < 1.0		[A] < 1.0		[A] < 1.0	

Client: IGSL		Che	emtest .	Job No.:	21-28502	21-28502	21-28502	21-28502	21-28502	21-28502
Quotation No.:		Chem	est San	nple ID.:	1262174	1262175	1262176	1262177	1262178	1262179
Order No.:		Clie	ent Sam	ple Ref.:	AA155654	AA155658	AA155659	AA155663	AA155667	AA155668
		S	Sample I	_ocation:	TP01	TP03	TP04	TP06	TP09	TP09
			Samp	ole Type:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
			Top De	epth (m):	0.50	0.70	0.60	0.60	0.50	1.20
			Asbes	stos Lab:	COVENTRY		COVENTRY		COVENTRY	
Determinand	Accred.	SOP	Units	LOD						
Total Aliphatic Hydrocarbons	N	2680	mg/kg	5.0	[A] < 5.0		[A] < 5.0		[A] < 5.0	
Aromatic TPH >C5-C7	N	2680	mg/kg	1.0	[A] < 1.0		[A] < 1.0		[A] < 1.0	
Aromatic TPH >C7-C8	N	2680	mg/kg	1.0	[A] < 1.0		[A] < 1.0		[A] < 1.0	
Aromatic TPH >C8-C10	U	2680	mg/kg	1.0	[A] < 1.0		[A] < 1.0		[A] < 1.0	
Aromatic TPH >C10-C12	U	2680	mg/kg	1.0	[A] < 1.0		[A] < 1.0		[A] < 1.0	
Aromatic TPH >C12-C16	U	2680	mg/kg	1.0	[A] < 1.0		[A] < 1.0		[A] < 1.0	
Aromatic TPH >C16-C21	U	2680	mg/kg	1.0	[A] < 1.0		[A] < 1.0		[A] < 1.0	
Aromatic TPH >C21-C35	U	2680	mg/kg	1.0	[A] < 1.0		[A] < 1.0		[A] < 1.0	
Aromatic TPH >C35-C44	N	2680	mg/kg	1.0	[A] < 1.0		[A] < 1.0		[A] < 1.0	
Total Aromatic Hydrocarbons	N	2680	mg/kg	5.0	[A] < 5.0		[A] < 5.0		[A] < 5.0	
Total Petroleum Hydrocarbons	N	2680	mg/kg	10.0	[A] < 10		[A] < 10		[A] < 10	
Benzene	U	2760	µg/kg	1.0	[A] < 1.0		[A] < 1.0		[A] < 1.0	
Toluene	U	2760	µg/kg	1.0	[A] < 1.0		[A] < 1.0		[A] < 1.0	
Ethylbenzene	U	2760	µg/kg	1.0	[A] < 1.0		[A] < 1.0		[A] < 1.0	
m & p-Xylene	U	2760	µg/kg	1.0	[A] < 1.0		[A] < 1.0		[A] < 1.0	
o-Xylene	U	2760	µg/kg	1.0	[A] < 1.0		[A] < 1.0		[A] < 1.0	
Methyl Tert-Butyl Ether	U	2760	µg/kg	1.0	[A] < 1.0		[A] < 1.0		[A] < 1.0	
Naphthalene	N	2800	mg/kg	0.010	[A] < 0.010		[A] < 0.010		[A] < 0.010	
Acenaphthylene	N	2800	mg/kg	0.010	[A] < 0.010		[A] < 0.010		[A] < 0.010	
Acenaphthene	N	2800	mg/kg	0.010	[A] < 0.010		[A] < 0.010		[A] < 0.010	
Fluorene	N	2800	mg/kg	0.010	[A] < 0.010		[A] < 0.010		[A] < 0.010	
Phenanthrene	N	2800	mg/kg	0.010	[A] < 0.010		[A] < 0.010		[A] < 0.010	
Anthracene	N	2800	mg/kg	0.010	[A] < 0.010		[A] < 0.010		[A] < 0.010	
Fluoranthene	N	2800	mg/kg	0.010	[A] 0.072		[A] < 0.010		[A] < 0.010	
Pyrene	N	2800	mg/kg	0.010	[A] 0.080		[A] < 0.010		[A] < 0.010	
Benzo[a]anthracene	N	2800	mg/kg	0.010	[A] < 0.010		[A] < 0.010		[A] < 0.010	
Chrysene	N	2800	mg/kg	0.010	[A] < 0.010		[A] < 0.010		[A] < 0.010	
Benzo[b]fluoranthene	N	2800	mg/kg	0.010	[A] < 0.010		[A] < 0.010		[A] < 0.010	
Benzo[k]fluoranthene	N	2800	mg/kg	0.010	[A] < 0.010		[A] < 0.010		[A] < 0.010	
Benzo[a]pyrene	N	2800	mg/kg	0.010	[A] < 0.010		[A] < 0.010		[A] < 0.010	
Indeno(1,2,3-c,d)Pyrene	N	2800	mg/kg	0.010	[A] < 0.010		[A] < 0.010		[A] < 0.010	
Dibenz(a,h)Anthracene	N	2800	mg/kg	0.010	[A] < 0.010		[A] < 0.010		[A] < 0.010	
Benzo[g,h,i]perylene	N	2800	mg/kg	0.010	[A] < 0.010		[A] < 0.010		[A] < 0.010	
Coronene	N	2800	mg/kg	0.010	[A] < 0.010		[A] < 0.010		[A] < 0.010	
Total Of 17 PAH's	Ν	2800	mg/kg	0.20	[A] < 0.20		[A] < 0.20		[A] < 0.20	
PCB 28	N	2815	mg/kg	0.0010	[A] < 0.0010		[A] < 0.0010		[A] < 0.0010	
PCB 52	N	2815	mg/kg	0.0010	[A] < 0.0010		[A] < 0.0010		[A] < 0.0010	
PCB 90+101	N	2815	mg/kg	0.0010	[A] < 0.0010		[A] < 0.0010		[A] < 0.0010	
PCB 118	N	2815	mg/kg	0.0010	[A] < 0.0010		[A] < 0.0010		[A] < 0.0010	

Results - Soil

Client: IGSL		Ch	emtest	Job No.:	21-28502	21-28502	21-28502	21-28502	21-28502	21-28502
Quotation No.:		Chemtest Sample ID.:		1262174	1262175	1262176	1262177	1262178	1262179	
Order No.:	Client Sample Re		ple Ref.:	AA155654	AA155658	AA155659	AA155663	AA155667	AA155668	
	Sample Location:		TP01	TP03	TP04	TP06	TP09	TP09		
			Sam	ole Type:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
			Top D	epth (m):	0.50	0.70	0.60	0.60	0.50	1.20
			Asbe	stos Lab:	COVENTRY		COVENTRY		COVENTRY	
Determinand	Accred.	SOP	Units	LOD						
PCB 153	Ν	2815	mg/kg	0.0010	[A] < 0.0010		[A] < 0.0010		[A] < 0.0010	
PCB 138	Ν	2815	mg/kg	0.0010	[A] < 0.0010		[A] < 0.0010		[A] < 0.0010	
PCB 180	Ν	2815	mg/kg	0.0010	[A] < 0.0010		[A] < 0.0010		[A] < 0.0010	
Total PCBs (7 congeners)	Ν	2815	mg/kg	0.0010	[A] < 0.0010		[A] < 0.0010		[A] < 0.0010	
Total Phenols	U	2920	mg/kg	0.10	< 0.10		< 0.10		< 0.10	

Project: 23434 Ballyhale FRS (DBFL)

Chemtest Job No:	21-28502				Landfill V	Vaste Acceptanc	e Criteria
Chemtest Sample ID:	1262174					Limits	
Sample Ref:	AA155654					Stable, Non-	
Sample ID:						reactive	
Sample Location:	TP01					hazardous	Hazardous
Top Depth(m):	0.50				Inert Waste	waste in non-	Waste
Bottom Depth(m):					Landfill	hazardous	Landfill
Sampling Date:						Landfill	
Determinand	SOP	Accred.	Units				
Total Organic Carbon	2625	U	%	[A] 1.1	3	5	6
Loss On Ignition	2610	U	%	5.8			10
Total BTEX	2760	U	mg/kg	[A] < 0.010	6		
Total PCBs (7 congeners)	2815	N	mg/kg	[A] < 0.0010	1		
TPH Total WAC	2670	U	mg/kg	[A] < 10	500		
Total Of 17 PAH's	2800	N	mg/kg	[A] < 0.20	100		
рН	2010	U		8.0		>6	
Acid Neutralisation Capacity	2015	N	mol/kg	< 0.0020		To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values	for compliance	eaching test
			mg/l	mg/kg	using BS EN 12457 at L/S 10 l/kg		
Arsenic	1455	U	0.0008	0.0083	0.5	2	25
Barium	1455	U	< 0.005	< 0.0005	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	< 0.0005	< 0.0005	0.5	10	70
Copper	1455	U	0.0020	0.020	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	0.0006	0.0064	0.5	10	30
Nickel	1455	U	0.0007	0.0072	0.4	10	40
Lead	1455	U	0.0005	0.0051	0.5	10	50
Antimony	1455	U	< 0.0005	< 0.0005	0.06	0.7	5
Selenium	1455	U	< 0.0005	< 0.0005	0.1	0.5	7
Zinc	1455	U	< 0.003	< 0.003	4	50	200
Chloride	1220	U	< 1.0	< 10	800	15000	25000
Fluoride	1220	U	0.16	1.6	10	150	500
Sulphate	1220	U	< 1.0	< 10	1000	20000	50000
Total Dissolved Solids	1020	N	22	210	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610	U	6.3	63	500	800	1000

Solid Information									
Dry mass of test portion/kg	0.090								
Moisture (%)	12								

Waste Acceptance Criteria

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes. This analysis is only applicable for hazardous waste landfill acceptance and does not give any indication as to whether a waste may be hazardous or non-hazardous.

Project: 23434 Ballyhale FRS (DBFL)

Chemtest Job No:	21-28502				Landfill V	Vaste Acceptanc	e Criteria
Chemtest Sample ID:	1262176					Limits	
Sample Ref:	AA155659					Stable, Non-	
Sample ID:						reactive	
Sample Location:	TP04					hazardous	Hazardous
Top Depth(m):	0.60				Inert Waste	waste in non-	Waste
Bottom Depth(m):					Landfill	hazardous	Landfill
Sampling Date:						Landfill	
Determinand	SOP	Accred.	Units				
Total Organic Carbon	2625	U	%	[A] 0.42	3	5	6
Loss On Ignition	2610	U	%	4.5			10
Total BTEX	2760	U	mg/kg	[A] < 0.010	6		
Total PCBs (7 congeners)	2815	N	mg/kg	[A] < 0.0010	1		
TPH Total WAC	2670	U	mg/kg	[A] < 10	500		
Total Of 17 PAH's	2800	N	mg/kg	[A] < 0.20	100		
рН	2010	U		8.1		>6	
Acid Neutralisation Capacity	2015	N	mol/kg	0.010		To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values	for compliance	eaching test
			mg/l	mg/kg	using BS EN 12457 at L/S 10 I/kg		
Arsenic	1455	U	< 0.0002	< 0.0002	0.5	2	25
Barium	1455	U	< 0.005	< 0.0005	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	< 0.0005	< 0.0005	0.5	10	70
Copper	1455	U	< 0.0005	< 0.0005	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	0.0004	0.0036	0.5	10	30
Nickel	1455	U	< 0.0005	< 0.0005	0.4	10	40
Lead	1455	U	< 0.0005	< 0.0005	0.5	10	50
Antimony	1455	U	< 0.0005	< 0.0005	0.06	0.7	5
Selenium	1455	U	< 0.0005	< 0.0005	0.1	0.5	7
Zinc	1455	U	< 0.003	< 0.003	4	50	200
Chloride	1220	U	< 1.0	< 10	800	15000	25000
Fluoride	1220	U	0.089	< 1.0	10	150	500
Sulphate	1220	U	2.3	23	1000	20000	50000
Total Dissolved Solids	1020	N	16	160	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610	U	2.7	< 50	500	800	1000

Solid Information								
Dry mass of test portion/kg	0.090							
Moisture (%)	10							

Waste Acceptance Criteria

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes. This analysis is only applicable for hazardous waste landfill acceptance and does not give any indication as to whether a waste may be hazardous or non-hazardous.

Project: 23434 Ballyhale FRS (DBFL)

Chemtest Job No:	21-28502				Landfill V	Vaste Acceptanc	e Criteria
Chemtest Sample ID:	1262178					Limits	
Sample Ref:	AA155667					Stable, Non-	
Sample ID:						reactive	
Sample Location:	TP09					hazardous	Hazardous
Top Depth(m):	0.50				Inert Waste	waste in non-	Waste
Bottom Depth(m):					Landfill	hazardous	Landfill
Sampling Date:						Landfill	
Determinand	SOP	Accred.	Units				
Total Organic Carbon	2625	U	%	[A] 0.50	3	5	6
Loss On Ignition	2610	U	%	1.7			10
Total BTEX	2760	U	mg/kg	[A] < 0.010	6		
Total PCBs (7 congeners)	2815	N	mg/kg	[A] < 0.0010	1		
TPH Total WAC	2670	U	mg/kg	[A] < 10	500		
Total Of 17 PAH's	2800	N	mg/kg	[A] < 0.20	100		
рН	2010	U		8.4		>6	
Acid Neutralisation Capacity	2015	N	mol/kg	0.0060		To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values	for compliance	eaching test
			mg/l	mg/kg	using BS EN 12457 at L/S 10 l/kg		
Arsenic	1455	U	< 0.0002	< 0.0002	0.5	2	25
Barium	1455	U	< 0.005	< 0.0005	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	< 0.0005	< 0.0005	0.5	10	70
Copper	1455	U	< 0.0005	< 0.0005	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	0.0014	0.014	0.5	10	30
Nickel	1455	U	< 0.0005	< 0.0005	0.4	10	40
Lead	1455	U	< 0.0005	< 0.0005	0.5	10	50
Antimony	1455	U	< 0.0005	< 0.0005	0.06	0.7	5
Selenium	1455	U	< 0.0005	< 0.0005	0.1	0.5	7
Zinc	1455	U	< 0.003	< 0.003	4	50	200
Chloride	1220	U	< 1.0	< 10	800	15000	25000
Fluoride	1220	U	0.25	2.5	10	150	500
Sulphate	1220	U	< 1.0	< 10	1000	20000	50000
Total Dissolved Solids	1020	N	25	250	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610	U	3.5	< 50	500	800	1000

Solid Information									
Dry mass of test portion/kg	0.090								
Moisture (%)	6.5								

Waste Acceptance Criteria

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes. This analysis is only applicable for hazardous waste landfill acceptance and does not give any indication as to whether a waste may be hazardous or non-hazardous.

Deviations

In accordance with UKAS Policy on Deviating Samples TPS 63. Chemtest have a procedure to ensure 'upon receipt of each sample a competent laboratory shall assess whether the sample is suitable with regard to the requested test(s)'. This policy and the respective holding times applied, can be supplied upon request. The reason a sample is declared as deviating is detailed below. Where applicable the analysis remains UKAS/MCERTs accredited but the results may be compromised.

Sample:	Sample Ref:	Sample ID:	Sample Location:	Sampled Date:	Deviation Code(s):	Containers Received:
1262174	AA155654		TP01		A	Amber Glass 250ml
1262174	AA155654		TP01		A	Plastic Tub 500g
1262175	AA155658		TP03		A	Amber Glass 250ml
1262175	AA155658		TP03		A	Plastic Tub 500g
1262176	AA155659		TP04		A	Amber Glass 250ml
1262176	AA155659		TP04		A	Plastic Tub 500g
1262177	AA155663		TP06		A	Amber Glass 250ml
1262177	AA155663		TP06		A	Plastic Tub 500g
1262178	AA155667		TP09		A	Amber Glass 250ml
1262178	AA155667		TP09		A	Plastic Tub 500g
1262179	AA155668		TP09		A	Amber Glass 250ml
1262179	AA155668		TP09		A	Plastic Tub 500g

Test Methods

SOP	Title	Parameters included	Method summary	
1010	pH Value of Waters	рН	pH Meter	
1020	Electrical Conductivity and Total Dissolved Solids (TDS) in Waters	Electrical Conductivity and Total Dissolved Solids (TDS) in Waters	Conductivity Meter	
1220	Anions, Alkalinity & Ammonium in Waters	Fluoride; Chloride; Nitrite; Nitrate; Total; Oxidisable Nitrogen (TON); Sulfate; Phosphate; Alkalinity; Ammonium	Automated colorimetric analysis using 'Aquakem 600' Discrete Analyser.	
1455	Metals in Waters by ICP-MS	Metals, including: Antimony; Arsenic; Barium; Beryllium; Boron; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Tin; Vanadium; Zinc	Filtration of samples followed by direct determination by inductively coupled plasma mass spectrometry (ICP-MS).	
1610	Total/Dissolved Organic Carbon in Waters	Organic Carbon	TOC Analyser using Catalytic Oxidation	
1800	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Waters by GC-MS	Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene	Pentane extraction / GCMS detection	
1920	Phenols in Waters by HPLC	Phenolic compounds including: Phenol, Cresols, Xylenols, Trimethylphenols Note: Chlorophenols are excluded.	Determination by High Performance Liquid Chromatography (HPLC) using electrochemical detection.	
2010	pH Value of Soils	pН	pH Meter	
2015	Acid Neutralisation Capacity	Acid Reserve	Titration	
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.	
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930	
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES	
2175	Total Sulphur in Soils	Total Sulphur	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.	
2180	Sulphur (Elemental) in Soils by HPLC	Sulphur	Dichloromethane extraction / HPLC with UV detection	
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry	
2220	Water soluble Chloride in Soils	Chloride	Aqueous extraction and measuremernt by 'Aquakem 600' Discrete Analyser using ferric nitrate / mercuric thiocyanate.	
2300	Cyanides & Thiocyanate in Soils	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Allkaline extraction followed by colorimetric determination using Automated Flow Injection Analyser.	
2325	Sulphide in Soils	Sulphide	Steam distillation with sulphuric acid / analysis by 'Aquakem 600' Discrete Analyser, using N,N–dimethyl-p-phenylenediamine.	
2430	Total Sulphate in soils	Total Sulphate	Acid digestion followed by determination of sulphate in extract by ICP-OES.	
2450	Acid Soluble Metals in Soils	Metals, including: Arsenic; Barium; Beryllium; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Vanadium; Zinc	Acid digestion followed by determination of metals in extract by ICP-MS.	
2490	Hexavalent Chromium in Soils	Chromium [VI]	Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide.	

Test Methods

SOP	Title	Parameters included	Method summary	
2610	Loss on Ignition	loss on ignition (LOI)	Determination of the proportion by mass that is lost from a soil by ignition at 550°C.	
2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.	
2670	Total Petroleum Hydrocarbons (TPH) in Soils by GC-FID	TPH (C6–C40); optional carbon banding, e.g. 3- band – GRO, DRO & LRO*TPH C8–C40	Dichloromethane extraction / GC-FID	
2680	TPH A/A Split	Aliphatics: >C5–C6, >C6–C8,>C8–C10, >C10–C12, >C12–C16, >C16–C21, >C21– C35, >C35–C44Aromatics: >C5–C7, >C7–C8, >C8–C10, >C10–C12, >C12–C16, >C16–C21, >C21–C35, >C35–C44	Dichloromethane extraction / GCxGC FID detection	
2760	Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule	Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.	
2800	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-MS	Acenaphthene*; Acenaphthylene; Anthracene*; Benzo[a]Anthracene*; Benzo[a]Pyrene*; Benzo[b]Fluoranthene*; Benzo[ghi]Perylene*; Benzo[k]Fluoranthene; Chrysene*; Dibenz[ah]Anthracene; Fluoranthene*; Fluorene*; Indeno[123cd]Pyrene*; Naphthalene*; Phenanthrene*; Pyrene*	Dichloromethane extraction / GC-MS	
2815	Polychlorinated Biphenyls (PCB) ICES7Congeners in Soils by GC-MS	ICES7 PCB congeners	Acetone/Hexane extraction / GC-MS	
2920	Phenols in Soils by HPLC	Phenolic compounds including Resorcinol, Phenol, Methylphenols, Dimethylphenols, 1- Naphthol and TrimethylphenolsNote: chlorophenols are excluded.	60:40 methanol/water mixture extraction, followed by HPLC determination using electrochemical detection.	
640	Characterisation of Waste (Leaching C10)	Waste material including soil, sludges and granular waste	ComplianceTest for Leaching of Granular Waste Material and Sludge	

Report Information

ĸey	
U	UKAS accredited
Μ	MCERTS and UKAS accredited
Ν	Unaccredited
S	This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
SN	This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
Т	This analysis has been subcontracted to an unaccredited laboratory
I/S	Insufficient Sample
U/S	Unsuitable Sample
N/E	not evaluated
<	"less than"
>	"greater than"
SOP	Standard operating procedure
LOD	Limit of detection

Comments or interpretations are beyond the scope of UKAS accreditation The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 30 days from the date of receipt All water samples will be retained for 14 days from the date of receipt Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.com</u> Appendix III Site Plan

